

A Feasibility Study of Hydrogen Production at Hitra

Bachelor's thesis in Renewable Energy (Fornybar energi)

May 2020

Torbjørn Heimvik Ingrid Gunheim Folkestad Jesper Wimann Ingebretsen

Jesper Wimann Ingebretsen

Ingrid Gunheim Folkestad

Torbjørn Heimvik

Problem Description

- Task provided by TrønderEnergi
- > Is hydrogen production at Hitra feasible?
 - Is it cost competitive?
 - Is there a demand for hydrogen?

Research Question

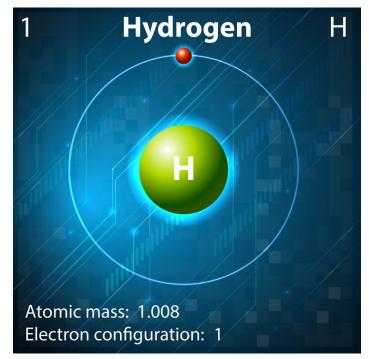
"Can Hitra — having access to local wind energy produce competitive hydrogen for the regional maritime sector?"

Key Findings

 Levelized Cost of Hydrogen - LCOH: 36.4 - 37.8 NOK/kg (3.72 - 3.86 €/kg) for alkaline electrolysis (AWE)

- AWE best option

- 10 MW of electrolyzers:
 - Up to 1700 tons/year \rightarrow 4.7 tons/day
- Competitive hydrogen


due to costs & environmental benefits

Introduction and Background

Hydrogen (H) - Hydrogen gas (H₂)

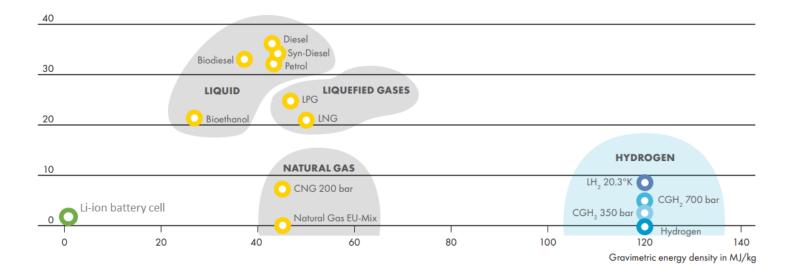
- Good energy carrier
- Energy storage
- Environmentally friendly
- Transport: used as fuel

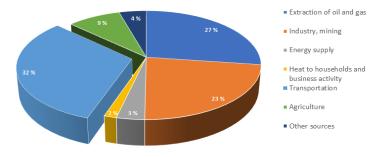
(Marin Gas Oil)

Diesel/MGO: 11.8 kWh/kg

H₂: 33.3 kWh/kg

50 Volumetric energy density MJ/l




Illustration: Dr. Jorg Adolf with several (Shell) https://preview.tinyurl.com/v4u7ess

NTNU

ightarrow Reduce Emissions in Transport Sector

Transport sector in **Norway**:

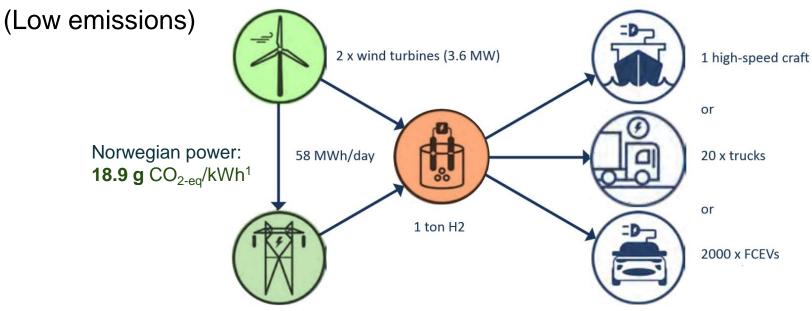
- Huge GHG emissions (32 %)¹

Transport sector in **Trøndelag**:

- 90 % of direct GHG emissions
- 50 60 % by sea

Hydrogen: a solution

- No CO₂ emissions (only water)
- Fuel cell: $H_2 \rightarrow$ electricity \rightarrow motor


$$2H_2 + O_2 \longrightarrow 2H_2O + \text{Electricity} + \text{Heat}$$

NTNU

→ Renewable Hydrogen Produced From Water Electrolysis

Water + Electricity \rightarrow Hydrogen (g) + Oxygen (g)

Alkaline Water Electrolysis (AWE) & PEM Water Electrolysis (PEMWE)

¹: NVE: https://www.nve.no/energiforsyning/varedeklarasjon/nasjonal-varedeklarasjon-2018/ Illustration: Fornybarklyngen. https://fornybarklyngen.no/prosjekter/veikart-hydrogen/

\rightarrow The Norwegian Hydrogen Market

- 225 000 tons of hydrogen

- Methanol and ammonia production
- Wind potential: 1000 TWh/y onshore
 - Haelous, Raggovidda

nel[•]

Why Hitra?

- High-speed craft (HSC) connection Tr-Kr
 - Likely to need H₂
- Maritime industry
 - ➢ Future H₂ demand
 - Well-boats
 - Trucks

Methodology

Available power from the transformer

Obtain information about electrolyzers and other components: production rates and input power Analyze the market demand: how much H₂ is needed? How much hydrogen can be produced?

Collect and compare data for lifetime and costs for all needed components

Calculate total LCOH and the price of H_2

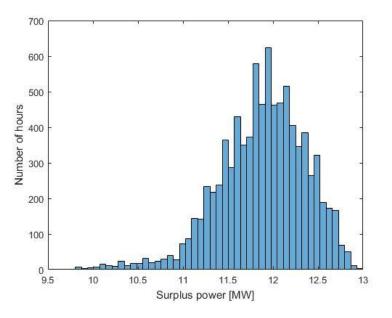
Cost/price

when using

AWE?

Compare price of H₂ with prices of other fuels: competitiveness?

Cost/price when using PEMWE? Cost/price when different parameters are varied?



\rightarrow Available Power

- Transformer at Hitra Harbor: 25 MVA
- Available power ~ 12 MW

Processing of raw data:

- Histogram
- Average week per month

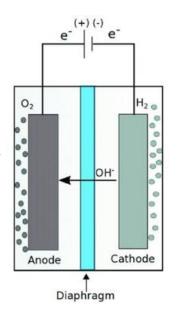
→ Selecting Electrolyzers

10 MW: Electrolyzers 2 MW: Compressor/filling and other losses

Electrolyzers from Nel Hydrogen:

- Alkaline and PEM electrolysis

→ Electrolysis Technologies


Water Electrolysis: Energy + $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

AWE: <u>Alkaline water electrolysis</u>

Liquid electrolyte and diaphragm

PEMWE: Proton exchange membrane water electrolyzer

- Solid membrane
- → PEMWE is more suited for load-following operations

Cost difference: PEMWE > AWE

Illustration: https://www.researchgate.net/figure/Mechanism-of-different-electrolyzers-for-hydrogen-production_fig3_327818654

\rightarrow Producing Hydrogen

Available energy Energy consumption data

Hydrogen production

Alkaline electrolysis: 1700 ton/year \rightarrow 4.7 ton/day PEM electrolysis: 1580 ton/year \rightarrow 4.3 ton/day

\rightarrow Hydrogen Demand

High-speed crafts (HSCs):

- 400 kg one crossing Tr Kr
- Three crossings per day $(x2) \rightarrow 2500$ kg per day

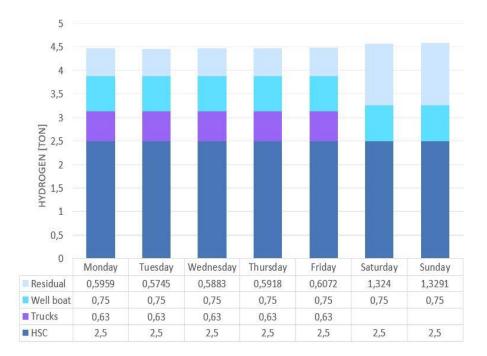
Well-boats:

- 5.25 tons per week
- Refueling two times per week

Trucks:

- 1 ton hydrogen \rightarrow 20 trucks¹
- 63 trucks per day Monday Friday
 - Total demand: 3.15 tons per day
- 20% of total demand \rightarrow 0.63 tons per day

¹: Fornybarklyngen. https://fornybarklyngen.no/prosjekter/veikart-hydrogen/ Illustration: https://www.tungt.no/transportmagasinet/scania-over-pa-hydrogen-na-i-trondheim-6869919

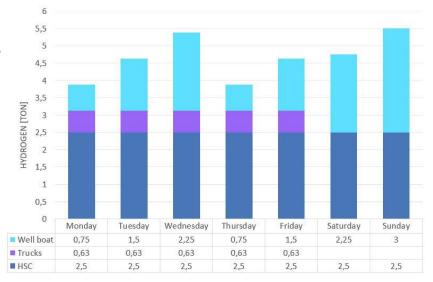

→ Hydrogen Distribution

Average week

~ 4.5 tons per day

Main case:

- 2 HSCs per day
- 1 well-boat per week
- 63 trucks per week


\rightarrow Storage

Stationary storage: 8.0 tons

- Steel tanks

Mobile storage: 2.0 tons

- Composite tanks
- Hexagon

Target pressure: 250 bar Storage pressure: 300 bar

→ Additional Scenario: High-speed crafts only

First end user of hydrogen at Hitra Harbor

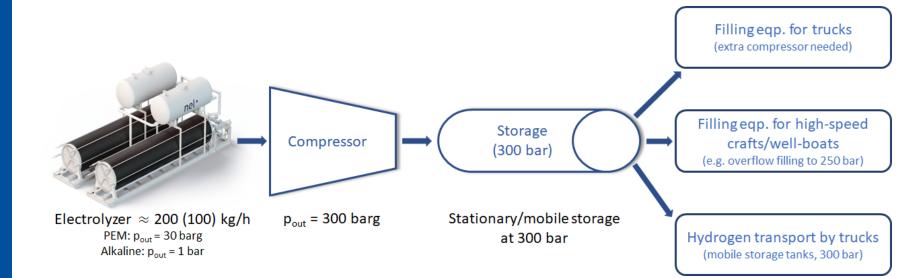
Production:

- 2500 kg per day
- 5.5 MW electrolysis

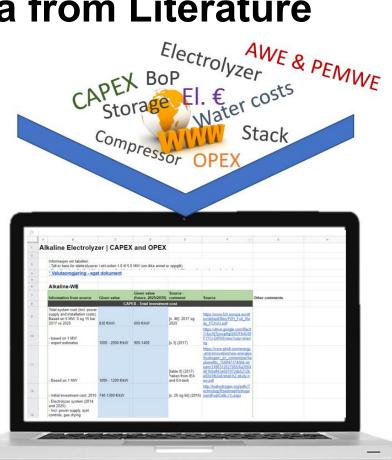
Storage:

- < 5 tons in stationary steel tanks
- Avoids the regulation for major accident

22


\rightarrow Regulations for Major Accidents

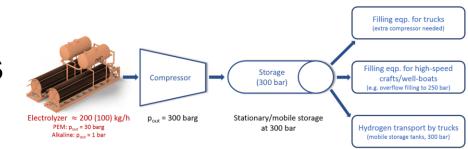
- Exceeds 5 tons: Notifiable business
 - Report every third year
- No specific safety distance table for hydrogen

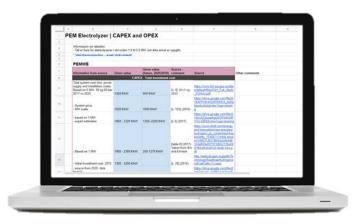

Summary: This is the Case

NTNU

\rightarrow Obtaining Cost Data from Literature

- Data collected and compared
- Categories:
 - CAPEX (eqp. investment)
 - OPEX (maintenance, yearly)
 - El. & water costs
- Adapting to Scenario at Hitra
- Assumptions

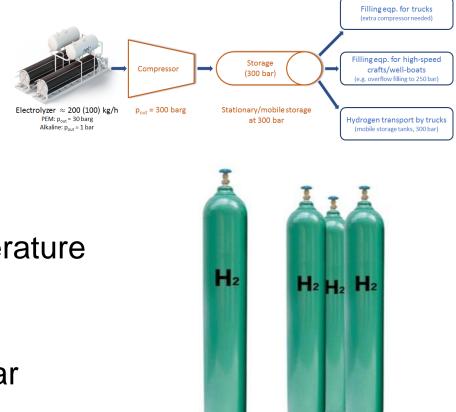




→ Electrolyzer Costs

AWE & PEMWE

- CAPEX for system
- OPEX
- Stack Replacement
- Excl. "Other costs" (installation, building, engineering, administration)
- Using average values

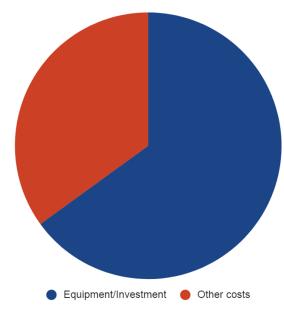

X €/kW

→ Costs for Compr. & Storage

- Storage at 300 bar:
 - 8 ton: steel containers
 - 2 ton: composite
- Average costs from literature
 - + Hexagon
- Compression to 300 bar
- Assumptions, adapting data

Illustration: https://www.indiamart.com/proddetail/hydrogen-gas-20875738973.html

26



\rightarrow Defining "Other Costs"

(Installation, building, engineering, administration)

Two models:

- NVE: 35 % of total investment¹
- FCH: 38 % av equipment costs²

¹: NVE – kostnader i energisektoren. http://publikasjoner.nve.no/rapport/2015/rapport2015_02a.pdf ²: FCH JU: https://www.fch.europa.eu/sites/default/files/P2H_Full_Study_FCHJU.pdf

→ Costs for Water & Electricity

- For Hitra, specifically
- Based on estimated consumption

Electricity costs: **50 - 70 %** of total H2 costs

Energy price: 24 øre/kWh
(24.57 EUR/MWh)

Results

- Lifetime: 20 years
- Stack replacements
 - \rightarrow AWE: 10 years
 - \rightarrow PEMWE: 7 years

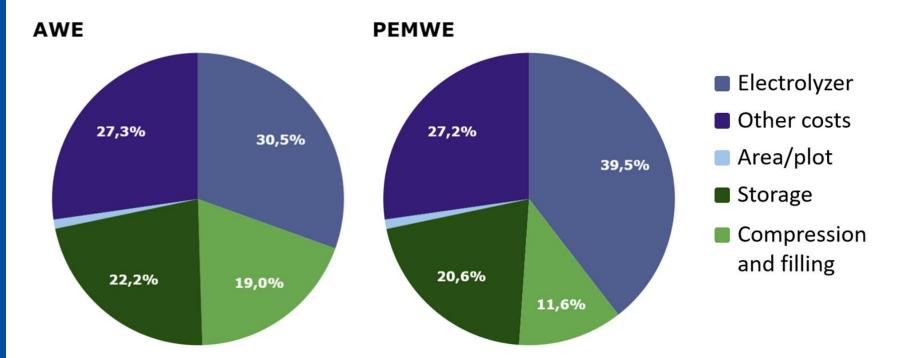
Scenario	Electrolyzer size	Storage Capacity	Production per year
Full production	10 MW	10 tons	1700 tons
HSCs only	5.5 MW	< 5 tons	913 tons

(High-speed crafts)

\rightarrow CAPEX and OPEX (Full Production)

CAPEX

		Electrolyzer	Compression and filling Storage	Building		"Other costs"		Total CAPEX	
				Storage	plot	FCH	NVE	FCH	NVE
AWE	[M€]	5.03	3.14	3.66	0.170	4.50	6.37	16.5	18.4
AWE	[MNOK]	49.2	30.7	35.8	1.66	44.0	62.3	161	180
PEMWE	[M€]	7.03	2.06	3.66	0.190	4.84	6.84	17.8	19.8
PENIWE	[MNOK]	68.8	20.1	35.8	1.90	47.3	66.9	174	194

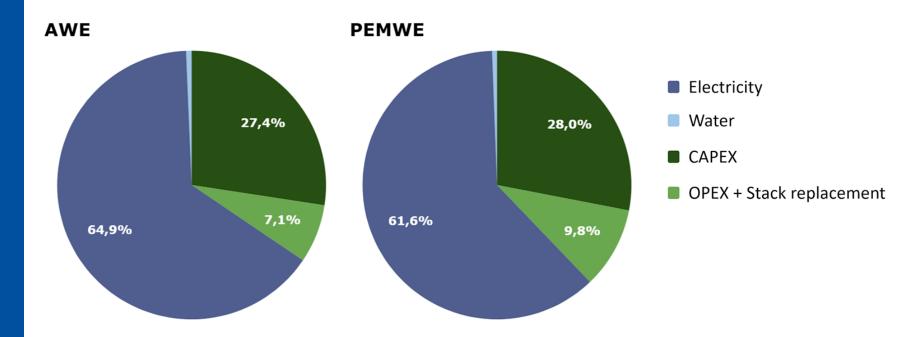

OPEX

		Electrolyzer	Stack replacement	Compression and filling	Storage	Electricity	Water	Total $OPEX^a$
AWE	[k€]	151.0	3 079	63.00	73.00	$3 \ 978$	40.00	4 305
AWE	[MNOK]	1.477	30.11	0.616	0.714	38.90	0.3912	42.10
DEMME	[k€]	211.0	$3\ 267$	41.00	73.00	$3 \ 978$	38.00	4 340
PEMWE	[MNOK]	2.064	31.95	0.401	0.714	38.90	0.3716	42.44

 a Stack replacement is excluded in Total OPEX

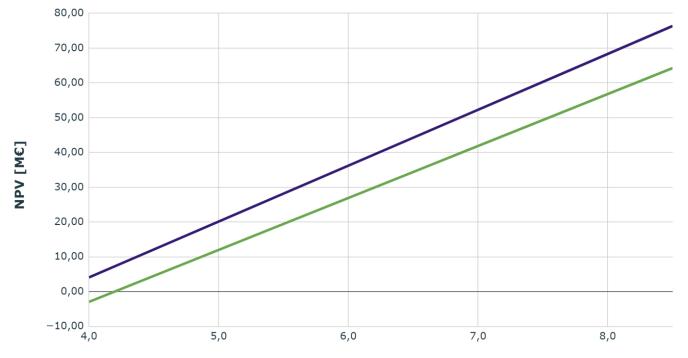
 \rightarrow CAPEX

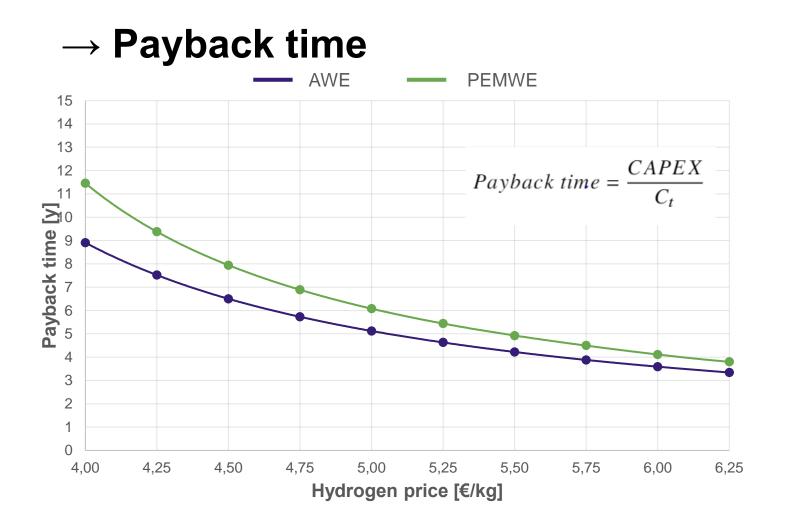
\rightarrow LCOH


- Levelized cost of Hydrogen (LCOH)

$$LCOH = \frac{CAPEX + \sum_{k=1}^{n} \frac{OPEX}{(1+r)^{k}}}{\sum_{k=1}^{n} \frac{m_{g}}{(1+r)^{k}}}$$

Electrolyzers	Full production, NOK/kg (€/kg)	HSCs only, NOK/kg (€/kg)
AWE	36.7 - 37.8 (3.75 - 3.86)	36.4 - 37.6 (3.72 - 3.84)
PEMWE	41.6 - 42.8 (4.25 - 4.38)	39.9 - 41.1 (4.08 - 4.20)

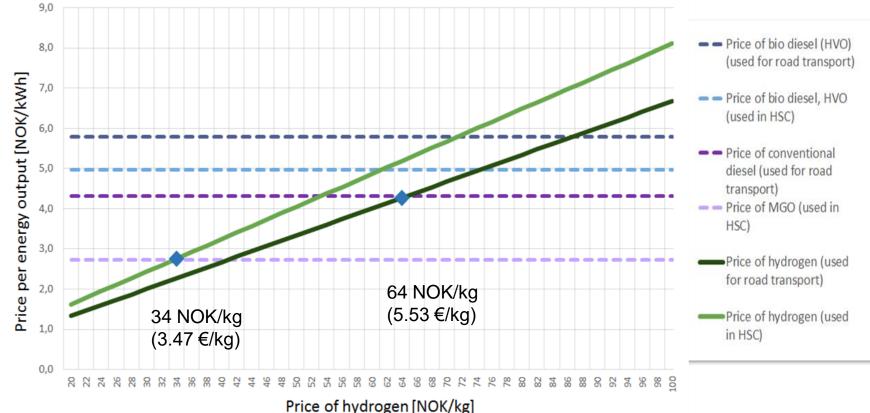

\rightarrow LCOH Shares


\rightarrow NPV Analysis

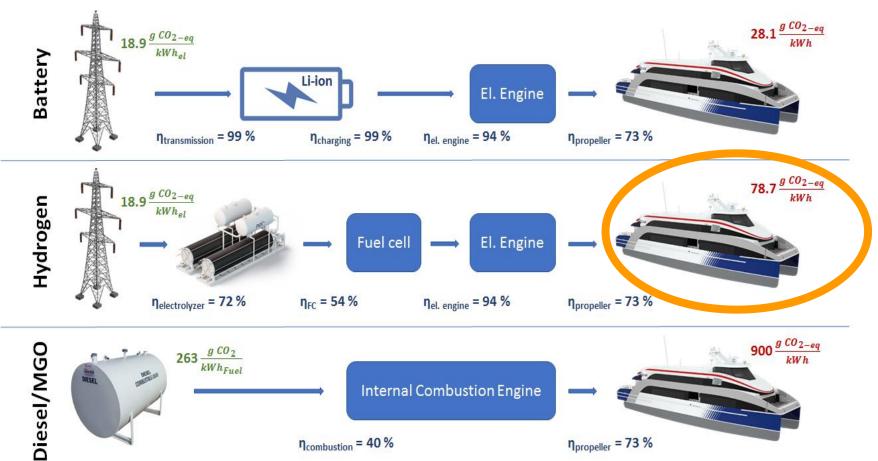
- AWE - PEMWE

Hydrogen price [€/kg]

Competitiveness


Two factors to consider:

- 1. Costs / prices for hydrogen. Compared to other fuels / other available H2
- 2. Environmental benefits

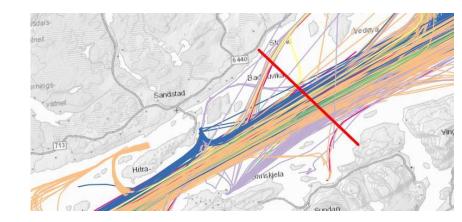


→ Competitiveness Due to Costs/Prices

 $\eta_{\text{combustion}} = 40 \%$

 $\eta_{\text{propeller}} = 73 \%$

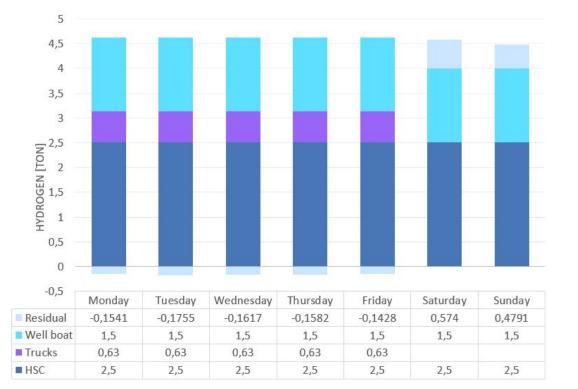
Conclusions


"Can Hitra — having access to local wind energy — produce competitive hydrogen for the regional maritime sector?"

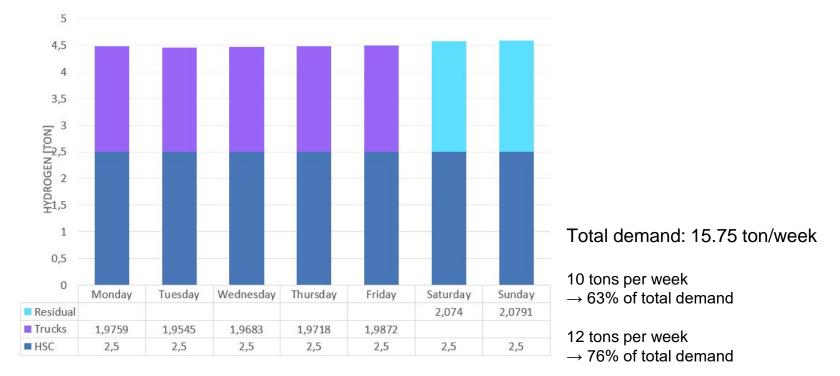
- \rightarrow Yes, it is possible to produce competitive hydrogen for the maritime sector at Hitra.
 - AWE is the cheapest option for hydrogen production
 - Electricity constitutes a large share of the costs
 - El. needs to be cheap
 - No tailpipe emissions: Environmentally friendly
 - Green transformation \Rightarrow H₂ > MGO/Diesel
 - Green production at Hitra

Future Work

- Building plot


- Logistics for refueling
- Analysis of the shipping lane outside of Hitra
- Environmental aspect: LCA analysis

Extra slides


Option two: Additional well-boat

 \rightarrow Low delivery reliability

Option three: Cover more of the total demand for trucks

Compressed vs Liquid Hydrogen

Favor of Compressed	Favor of Liquid
Cheapest	Store greater mass with the same volume
Requires less energy	Best when producing large amounts
Most common	The future

\rightarrow Hydrogen production at Hitra: Compressed Hydrogen

Cost Reduction & Inflation

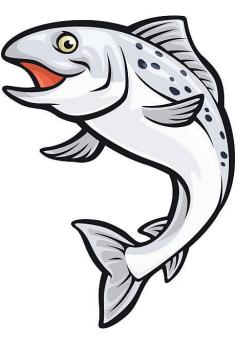
\Rightarrow Cost in **2020**:

	Electrolyzer	Stack replacement	OPEX: 3.0 %
AWE	503 €/kW	308 €/kW	of CAPEX
PEMWE	703 €/kW	326 €/kW	per year

Illustration: https://www.fch.europa.eu/sites/default/files/P2H_Full_Study_FCHJU.pdf

Electricity & Water Costs

Category	Price [excl. VAT]
Fixed price, grid tariff	20 800 NOK/year
Energy price, grid tariff	2.8 øre/kWh
Power price - winter, grid tariff	38 NOK/kW (per month)
Power price - summer, grid tariff	28 NOK/kW (per month)
Energy price, average 2021 - 2030	24 øre/kWh (24.57 EUR/MWh)
Water: subscription fee	65 782.96 NOK
Water: consumption price	14.93 NOK/m ³


Advantages with Hitra as Location

Growing hydrogen market:

- Norway
- Green hydrogen
- High-speed crafts

Salmon industry:

- Require a lot of energy
- Unique opportunity for Hitra
- Hydrogen, oxygen and waste heat

